409 research outputs found

    On R-trees with low query complexity

    Get PDF
    The R-tree is a well-known bounding-volume hierarchy that is suitable for storing geometric data on secondary memory. Unfortu- nately, no good analysis of its query time exists. We describe a new algo- rithm to construct an R-tree for a set of planar objects that has provably good query complexity for point location queries and range queries with ranges of small width. For certain important special cases, our bounds are optimal. We also show how to update the structure dynamically, and we generalize our results to higher-dimensional spaces

    Locked and Unlocked Polygonal Chains in 3D

    Get PDF
    In this paper, we study movements of simple polygonal chains in 3D. We say that an open, simple polygonal chain can be straightened if it can be continuously reconfigured to a straight sequence of segments in such a manner that both the length of each link and the simplicity of the chain are maintained throughout the movement. The analogous concept for closed chains is convexification: reconfiguration to a planar convex polygon. Chains that cannot be straightened or convexified are called locked. While there are open chains in 3D that are locked, we show that if an open chain has a simple orthogonal projection onto some plane, it can be straightened. For closed chains, we show that there are unknotted but locked closed chains, and we provide an algorithm for convexifying a planar simple polygon in 3D with a polynomial number of moves.Comment: To appear in Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, Jan. 199

    Fast Locality-Sensitive Hashing Frameworks for Approximate Near Neighbor Search

    Full text link
    The Indyk-Motwani Locality-Sensitive Hashing (LSH) framework (STOC 1998) is a general technique for constructing a data structure to answer approximate near neighbor queries by using a distribution H\mathcal{H} over locality-sensitive hash functions that partition space. For a collection of nn points, after preprocessing, the query time is dominated by O(nρlogn)O(n^{\rho} \log n) evaluations of hash functions from H\mathcal{H} and O(nρ)O(n^{\rho}) hash table lookups and distance computations where ρ(0,1)\rho \in (0,1) is determined by the locality-sensitivity properties of H\mathcal{H}. It follows from a recent result by Dahlgaard et al. (FOCS 2017) that the number of locality-sensitive hash functions can be reduced to O(log2n)O(\log^2 n), leaving the query time to be dominated by O(nρ)O(n^{\rho}) distance computations and O(nρlogn)O(n^{\rho} \log n) additional word-RAM operations. We state this result as a general framework and provide a simpler analysis showing that the number of lookups and distance computations closely match the Indyk-Motwani framework, making it a viable replacement in practice. Using ideas from another locality-sensitive hashing framework by Andoni and Indyk (SODA 2006) we are able to reduce the number of additional word-RAM operations to O(nρ)O(n^\rho).Comment: 15 pages, 3 figure

    Mutations in SRD5B1 (AKR1D1), the gene encoding δ 4-3-oxosteroid 5β-reductase, in hepatitis and liver failure in infancy

    Get PDF
    Background: A substantial group of patients with cholestatic liver disease in infancy excrete, as the major urinary bile acids, the glycine and taurine conjugates of 7α-hydroxy-3-oxo-4-cholenoic acid and 7α,12α -dihydroxy-3-oxo-4-cholenoic acid. It has been proposed that some (but not all) of these have mutations in the gene encoding Δ4-3-oxosteroid 5β-reductase (SRD5B1; AKR1D1, OMIM 604741). Aims: Our aim was to identify mutations in the SRD5B1 gene in patients in whom chenodeoxycholic acid and cholic acid were absent or present at low concentrations in plasma and urine, as these seemed strong candidates for genetic 5β-reductase deficiency. Patients and subjects: We studied three patients with neonatal onset cholestatic liver disease and normal γ-glutamyl transpeptidase in whom 3-oxo-Δ4 bile acids were the major bile acids in urine and plasma and saturated bile acids were at low concentration or undetectable. Any base changes detected in SRD5B1 were sought in the parents and siblings and in 50 ethnically matched control subjects. Methods: DNA was extracted from blood and the nine exons of SRD5B1 were amplified and sequenced. Restriction enzymes were used to screen the DNA of parents, siblings, and controls. Results: Mutations in the SRD5B1 gene were identified in all three children. Patient MS was homozygous for a missense mutation (662 C>T) causing a Pro198Leu amino acid substitution; patient BH was homozygous for a single base deletion (511 delT) causing a frame shift and a premature stop codon in exon 5; and patient RM was homozygous for a missense mutation (385 C>T) causing a Leu106Phe amino acid substitution. All had liver biopsies showing a giant cell hepatitis; in two, prominent extramedullary haemopoiesis was noted. MS was cured by treatment with chenodeoxycholic acid and cholic acid; BH showed initial improvement but then deteriorated and required liver transplantation; RM had advanced liver disease when treatment was started and also progressed to liver failure. Conclusions: Analysis of blood samples for SRD5B1 mutations can be used to diagnose genetic 5β-reductase deficiency and distinguish these patients from those who have another cause of 3-oxo-Δ4 bile aciduria, for example, severe liver damage. Patients with genetic 5β-reductase deficiency may respond well to treatment with chenodeoxycholic acid and cholic acid if liver disease is not too advanced

    Locked and Unlocked Polygonal Chains in Three Dimensions

    Get PDF
    This paper studies movements of polygonal chains in three dimensions whose links are not allowed to cross or change length. Our main result is an algorithmic proof that any simple closed chain that initially takes the form of a planar polygon can be made convex in three dimensions. Other results include an algorithm for straightening open chains having a simple orthogonal projection onto some plane, and an algorithm for making convex any open chain initially configured on the surface of a polytope. All our algorithms require only O (n) basic moves.

    Algorithms for Stable Matching and Clustering in a Grid

    Full text link
    We study a discrete version of a geometric stable marriage problem originally proposed in a continuous setting by Hoffman, Holroyd, and Peres, in which points in the plane are stably matched to cluster centers, as prioritized by their distances, so that each cluster center is apportioned a set of points of equal area. We show that, for a discretization of the problem to an n×nn\times n grid of pixels with kk centers, the problem can be solved in time O(n2log5n)O(n^2 \log^5 n), and we experiment with two slower but more practical algorithms and a hybrid method that switches from one of these algorithms to the other to gain greater efficiency than either algorithm alone. We also show how to combine geometric stable matchings with a kk-means clustering algorithm, so as to provide a geometric political-districting algorithm that views distance in economic terms, and we experiment with weighted versions of stable kk-means in order to improve the connectivity of the resulting clusters.Comment: 23 pages, 12 figures. To appear (without the appendices) at the 18th International Workshop on Combinatorial Image Analysis, June 19-21, 2017, Plovdiv, Bulgari
    corecore